3.2.13 \(\int x^{1+m} \cos ^2(a+b x) \, dx\) [113]

Optimal. Leaf size=97 \[ \frac {x^{2+m}}{2 (2+m)}+\frac {2^{-4-m} e^{2 i a} x^m (-i b x)^{-m} \text {Gamma}(2+m,-2 i b x)}{b^2}+\frac {2^{-4-m} e^{-2 i a} x^m (i b x)^{-m} \text {Gamma}(2+m,2 i b x)}{b^2} \]

[Out]

1/2*x^(2+m)/(2+m)+2^(-4-m)*exp(2*I*a)*x^m*GAMMA(2+m,-2*I*b*x)/b^2/((-I*b*x)^m)+2^(-4-m)*x^m*GAMMA(2+m,2*I*b*x)
/b^2/exp(2*I*a)/((I*b*x)^m)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3393, 3388, 2212} \begin {gather*} \frac {e^{2 i a} 2^{-m-4} x^m (-i b x)^{-m} \text {Gamma}(m+2,-2 i b x)}{b^2}+\frac {e^{-2 i a} 2^{-m-4} x^m (i b x)^{-m} \text {Gamma}(m+2,2 i b x)}{b^2}+\frac {x^{m+2}}{2 (m+2)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(1 + m)*Cos[a + b*x]^2,x]

[Out]

x^(2 + m)/(2*(2 + m)) + (2^(-4 - m)*E^((2*I)*a)*x^m*Gamma[2 + m, (-2*I)*b*x])/(b^2*((-I)*b*x)^m) + (2^(-4 - m)
*x^m*Gamma[2 + m, (2*I)*b*x])/(b^2*E^((2*I)*a)*(I*b*x)^m)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rubi steps

\begin {align*} \int x^{1+m} \cos ^2(a+b x) \, dx &=\int \left (\frac {x^{1+m}}{2}+\frac {1}{2} x^{1+m} \cos (2 a+2 b x)\right ) \, dx\\ &=\frac {x^{2+m}}{2 (2+m)}+\frac {1}{2} \int x^{1+m} \cos (2 a+2 b x) \, dx\\ &=\frac {x^{2+m}}{2 (2+m)}+\frac {1}{4} \int e^{-i (2 a+2 b x)} x^{1+m} \, dx+\frac {1}{4} \int e^{i (2 a+2 b x)} x^{1+m} \, dx\\ &=\frac {x^{2+m}}{2 (2+m)}+\frac {2^{-4-m} e^{2 i a} x^m (-i b x)^{-m} \Gamma (2+m,-2 i b x)}{b^2}+\frac {2^{-4-m} e^{-2 i a} x^m (i b x)^{-m} \Gamma (2+m,2 i b x)}{b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 90, normalized size = 0.93 \begin {gather*} \frac {1}{16} x^m \left (\frac {8 x^2}{2+m}+\frac {2^{-m} e^{2 i a} (-i b x)^{-m} \text {Gamma}(2+m,-2 i b x)}{b^2}+\frac {2^{-m} e^{-2 i a} (i b x)^{-m} \text {Gamma}(2+m,2 i b x)}{b^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(1 + m)*Cos[a + b*x]^2,x]

[Out]

(x^m*((8*x^2)/(2 + m) + (E^((2*I)*a)*Gamma[2 + m, (-2*I)*b*x])/(2^m*b^2*((-I)*b*x)^m) + Gamma[2 + m, (2*I)*b*x
]/(2^m*b^2*E^((2*I)*a)*(I*b*x)^m)))/16

________________________________________________________________________________________

Maple [F]
time = 0.08, size = 0, normalized size = 0.00 \[\int x^{1+m} \left (\cos ^{2}\left (b x +a \right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1+m)*cos(b*x+a)^2,x)

[Out]

int(x^(1+m)*cos(b*x+a)^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1+m)*cos(b*x+a)^2,x, algorithm="maxima")

[Out]

1/2*((m + 2)*integrate(x*x^m*cos(2*b*x + 2*a), x) + e^(m*log(x) + 2*log(x)))/(m + 2)

________________________________________________________________________________________

Fricas [A]
time = 0.11, size = 77, normalized size = 0.79 \begin {gather*} \frac {4 \, b x x^{m + 1} + {\left (i \, m + 2 i\right )} e^{\left (-{\left (m + 1\right )} \log \left (2 i \, b\right ) - 2 i \, a\right )} \Gamma \left (m + 2, 2 i \, b x\right ) + {\left (-i \, m - 2 i\right )} e^{\left (-{\left (m + 1\right )} \log \left (-2 i \, b\right ) + 2 i \, a\right )} \Gamma \left (m + 2, -2 i \, b x\right )}{8 \, {\left (b m + 2 \, b\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1+m)*cos(b*x+a)^2,x, algorithm="fricas")

[Out]

1/8*(4*b*x*x^(m + 1) + (I*m + 2*I)*e^(-(m + 1)*log(2*I*b) - 2*I*a)*gamma(m + 2, 2*I*b*x) + (-I*m - 2*I)*e^(-(m
 + 1)*log(-2*I*b) + 2*I*a)*gamma(m + 2, -2*I*b*x))/(b*m + 2*b)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{m + 1} \cos ^{2}{\left (a + b x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1+m)*cos(b*x+a)**2,x)

[Out]

Integral(x**(m + 1)*cos(a + b*x)**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1+m)*cos(b*x+a)^2,x, algorithm="giac")

[Out]

integrate(x^(m + 1)*cos(b*x + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^{m+1}\,{\cos \left (a+b\,x\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(m + 1)*cos(a + b*x)^2,x)

[Out]

int(x^(m + 1)*cos(a + b*x)^2, x)

________________________________________________________________________________________